首页> 外文OA文献 >Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media
【2h】

Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

机译:多孔介质中倾斜运动板的多物理场微极传输现象的有限元计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems.\udMicropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic (MHD), incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.
机译:非牛顿流出现在包括材料制造系统在内的许多工业运输过程中。\ ud微极性理论为探索具有内部微结构的新型非牛顿材料的流体动力学提供了一种极好的机制。磁场也可以用于控制导电聚合物流。为了探索流变材料加工过程中运移的数值模拟,目前,本文针对磁流体动力学(MHD),不可压缩,耗散,辐射和化学反应的微极性流体流动,邻近倾斜区域的传热和传质提出了有限元计算解决方案。多孔板嵌入饱和的均匀多孔介质中。包括热量产生/吸收作用。 Rosseland的扩散近似用于描述能量方程中的辐射热通量。采用Darcy模型来模拟多孔介质中的阻力效应。在低雷诺数和低磁雷诺数的假设下,控制输运方程变为无量纲形式。使用带有加权残差方案的Galerkin公式,将有限元解提出给边值问题。板倾角,Eringen耦合数,辐射传导数,吸热/生成参数,化学反应参数,板移动速度参数,磁参数,热格拉斯霍夫数,种类(绝对值)格拉斯霍夫数,磁导率参数,埃克特数的影响线速度,微旋转,温度和浓度曲线。此外,还列出了选定的热物理参数对摩擦系数,表面传热和传质速率的影响。有限元解由文献中几种极限情况的解验证。流程中有趣的特征被识别和解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号